On the chromatic number of Latin square graphs
نویسندگان
چکیده
منابع مشابه
On chromatic number of Latin square graphs
The chromatic number of a Latin square is the least number of partial transversals which cover its cells. This is just the chromatic number of its associated Latin square graph. Although Latin square graphs have been widely studied as strongly regular graphs, their chromatic numbers appear to be unexplored. We determine the chromatic number of a circulant Latin square, and find bounds for some ...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملThe chromatic number of the square of subcubic planar graphs
Wegner conjectured in 1977 that the square of every planar graph with maximum degree at most 3 is 7-colorable. We prove this conjecture using the discharging method and computational techniques to verify reducible configurations. Mathematics Subject Classification: Primary 05C15; Secondary 05C10, 68R10.
متن کاملChromatic Number of Square of Maximal Outerplanar Graphs
Let χ(G) denote the chromatic number of the square of a maximal outerplanar graph G and Q denote a maximal outerplanar graph obtained by adding three chords y1y3, y3y5, y5y1 to a 6-cycle y1y2 · · · y6y1. In this paper, it is proved that ∆+1 ≤ χ(G ) ≤ ∆+2, and χ(G) = ∆ + 2 if and only if G is Q, where ∆ represents the maximum degree of G.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2016
ISSN: 0012-365X
DOI: 10.1016/j.disc.2016.04.025